GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - Ist Semester-Examination - May/June- 2012

Subject code: X10001 Subject Name: Mathematics-I

Date:29/05/2012 Time: 10:30 am – 01:30 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) (i) Solve
$$\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$$

(ii) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2)

(b) (i)If
$$\theta = t^n e^{-r^2/4t}$$
, what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$?

(ii) Trace the curve
$$y^2(2a-x)=x^3$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

(ii) Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

(b) Solve the following differential equations:

(i)
$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$$

(ii)
$$(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0.$$
 03

OR

(b) Solve the following differential equations:

(i)
$$(1+y^2) dx = (\tan^{-1} y - x) dy$$

(ii)
$$x \frac{dy}{dx} + y \log y = xy e^x$$

Q.3 Attempt the following:

(a) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

(b) If
$$u = \sin^{-1} \left[\frac{x+y}{\sqrt{x}+\sqrt{y}} \right]$$
, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{-\sin u \cos 2u}{4 \cos^{3} u}$$

(c) If
$$x = r \cos \theta$$
 and $y = r \sin \theta$; evaluate $\frac{\partial(x, y)}{\partial y}$ & $\frac{\partial(r, \theta)}{\partial(x, y)}$ Page 1 of 6

04

Q.3 Attempt the following:

(a) If
$$u = f(r)$$
, where $r^2 = x^2 + y^2$,
 $\frac{\partial^2 u}{\partial r^2} = \frac{\partial^2 u}{\partial r^2} = \frac{1}{2} \frac{\partial^2$

prove that
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r} f'(r)$$
.

(b) If
$$z = x f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
;
show that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$

(c) Examine the function $f(x, y) = x^3 + y^3 - 3axy$ for maxima & minima. **04**

Q.4 Attempt the following:

- (a) Evaluate $\iint_R y \, dx \, dy$ where R is the region bounded by the parabolas $y^2 = 4x$ and 05 $x^2 = 4y$.
- (b) Change the order of integration & evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x \, dx \, dy}{x^2 + y^2}$
- (c) Using double integration ,find area lying between the parabola $y = 4x x^2$ and the line y = x.

OR

Q.4 Attempt the following:

- (a) Evaluate $\iint_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.
- (b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx \, dy \, dz}{\sqrt{\left(1-x^2-y^2-z^2\right)}}$
- (c) Calculate the volume of the solid bounded by the planes **04** x = 0, y = 0, x + y + z = 1 and z = 0.

Q.5 Attempt the following:

- (a) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t is the 05 time. Find the components of its velocity and acceleration at t = 1 in the direction i + j + 3k.
- **(b)** Find div \vec{F} and curl \vec{F} where $\vec{F} = grad(x^3 + y^3 + z^3 3xyz)$ at the point **05** (1, 2, 3)
- (c) The rate at which body cools is proportional to the difference between the temperature of the body and that of the surrounding air. If body in air at 25° C will cool from 100° to 75° in one minute, find its temperature at the end of three minutes.

OR

Q.5 Attempt the following:

- (a) Find the directional derivative of the scalar function $f(x, y, z) = x^2 + xy + z^2$ at the point A(1, -1, -1) in the direction of the line AB where B has coordinates (3, 2, 1)
- Use Green's theorem to evaluate $\int_{c}^{c} (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the osquare formed by the lines $y = \pm 1$, $x = \pm 1$.
- (c) Find the orthogonal trajectories of the family of curves $x^2 y^2 = c$.

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER - I • EXAMINATION - WINTER 2012

Subject code: X 10001 Date: 11/01/2013

Subject Name: Mathematics - I

Time: 10.30 am - 01.30 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) (i)Define the rank of Matrix. Determine the rank of Matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix}$ 03 Q.1
 - (ii)Is the Matrix $\begin{bmatrix} 1 & -5 & 4 & 5 \\ 0 & 1 & 2 & 3 \end{bmatrix}$ in row echelon form or reduced row 02
 - echelon form? (iii) Find the inverse of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ 02
 - **(b)** (i)Solve the following system of equations:

x+y+z 6, x=2y 3z 4, x=9z 6. by Gauss-elimitation and back **04** substitution method.

03 (ii) Using Gauss-Jordan method find the inverse of the matrix

$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}.$$

- (a) (i) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.
 - (ii) State the Euler's theorem for homogeneous function and if 03 $u = \sin^{-1} \left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{\frac{1}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}} \right) \text{ then prove that } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{20} \tan u.$
 - **(b)** (i) If y = f(x+2t) g(x = 2t), prove that $\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2}$. 04
 - (ii) If $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial(x, y)}{\partial(r, \theta)}$. 03

- (b) (i) Discuss the maxima and minima of $x^2 + y^2 + 6x + 12$. 04
 - (ii) Find the equation of tangent plane at the point (1,1,1) on the surface 03 $x^2 + y^2 + z^2$ 3. =
- (a) Solve the following differential equations: Q.3

(i)
$$(x^2 - y^2)dx = (2xy)dy$$
.

04

1

		(ii) $\frac{dx}{dy} + x = y$.	
	(b)	(i) Solve the exact differential equation	04
	()	$(x^2 + y^2 - a^2)xdx (x^2 + y^2 b^2)ydy 0$	
		(ii) Find the orthogonal trajectories of the family of the curve $x^2 - y^2 = c$.	03
		OR	
Q.3	(a)	Solve the following differential equations:	
		(i) $\frac{dy}{dx} - \frac{y}{x+1} = e^x(x+1)$, +	04
		(ii) $(e^y + 1)\cos x dx + e^y \sin x dy = 0$.	03
	(b)	(i) Solve $\cos(x+y)dy = dx$.	04
		(ii) Find the orthogonal trajectories of the family of the curve $r^2 = c \sin(2\theta)$.	03
Q.4	(a)	Trace the curves:	10
		(i) $r = a(1 + \cos \theta), a$ 0. (ii) $xy^2 = 9a^2(2a - x)$.	
	(b)	Evaluate $\int_{0}^{2} \int_{0}^{2} (x^2 + y^2) dx dy$.	04
		OR	
Q.4	(a)	Trace the curves:	10
		(i) $y^2(a-x) = x^3$, (ii) $r^2 = a^2 \cos 2\theta$.	
	(b)	Change the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ and evaluate it.	04
0.5	(a)	(i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{(1-y^2)}} (x^2 + y^2) dx dy$ by changing into polar coordinates.	04
Q.C	(4)	(i) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} (x + y) dx dy$ by changing into point coordinates.	•
		(ii) Evaluate $\int_{0}^{a} \int_{0}^{a-x} \int_{0}^{a-x-y} x dz dy dx$.	03
	(b)	(i) Find the constants a,b,c so that vector	03
	()	$(x+y+az)\hat{i}$ $(bx+2y \pm)\hat{j}$ $(-x cy +2z)\hat{k}$ —is irrotational.	
		(ii) Obtain the area of an Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, by using Green's theorem.	04
		·	
		OR	
Q.5	(a)	(i) Change the order of integration $\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x}^{1-x^2} y^2 dA$ and evaluate it.	04
		(ii) Evaluate $\int_{0}^{2} \int_{0}^{x} \int_{0}^{\sqrt{x+y}} z dx dy dz$.	03
	(b)	(i) Is the vector $\vec{v} = (x - 3y)\hat{i}$ $(y + 2z)\hat{j}$ $(x + 3z)\hat{k}$ solenoidal?	03

(ii) Find $\int_{c} \vec{F} d\vec{r}$, where $\vec{F} = \frac{y\hat{i} - x\hat{j}}{x^2 + y^2}$ and c is the circle $x^2 + y^2 = 4$ traversed **04**

Page 4 of 6

counter clockwise.

Seat No.:	Enrolment No.
	Zin dinient 1 (d)

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-I • EXAMINATION – SUMMER 2013

Subject Code: X10001 Date: 03-06-2013 **Subject Name: Mathematics - I** Time: 02.30 pm - 05.30 pm **Total Marks: 70 Instructions:** Attempt all questions. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q.1** Reduce the matrix $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$ into row echelon form and find its rank. 05 05 **(b)** Solve following linear system by Gauss – Jordan elimination method. 3x + 3y + 2z = 1x + 2y = 410 v + 3z = -22x - 3y - z = 5(c) Solve $(x^2 - yx^2) \frac{dy}{dx} + (y^2 + xy^2) = 0$. 04 Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ \vdots & \vdots & \ddots & \vdots \\ 2 & 0 & 1 & -6 \end{bmatrix}$. 0.2 07 1) Solve $(x^2 - y^2)dx - xydy = 0$. **(b)** 04 2) Solve $(x^2 - ay)dx = (ax - y^2)dy$ 03 **(b)** Trace the curve $y^2(a+x) = x^2(a-x)$ **07 Q.3** (a) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x + y + z)^2}$ 05 **(b)** If $x^2 = au + bv$ and $y^2 = au - bv$ then show that $\left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial x}{\partial u}\right) = \frac{1}{2}$. 05 (c) Show that $grad\left(\frac{1}{r}\right) = -\frac{r}{r^3}$. 04 Find the maximum and minimum value of the 0.3 07 function $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. **(b)** Evaluate the line integral $\int_C [(5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}]$ where C is the curve **07** $v = x^3$ from the point (1,1) to (2,8). **Q.4** (a) If $u = \tan^{-1} \left(\frac{y^2}{x} \right)$ prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin^2 u \sin 2u$. 07 1) Find curl \overline{F} at the point (1,2,3), where $\overline{F} = x^2 yz\overline{i} + xy^2 z\overline{j} + xyz^2 \overline{k}$. 04 **(b)** 2) Show that $\overline{F} = (-x^2 + yz)\overline{i} + (4y - z^2x)\overline{j} + (2xz - 4z)\overline{k}$ is solenoidal. 03

1

- **Q.4** (a) If $x = r \cos \theta$, $y = r \sin \theta$, prove that JJ' = 1.
 - (b) Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$, where C is bounded by y = x and $y = x^2$.
- Q.5 (a) Change the order of integration in $I = \int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ and hence evaluate.
 - **(b)** Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dx dy$. **05**
 - (c) Find the orthogonal trajectories of the family of the parabolas $y = ax^2$.

OR

- Q.5 (a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dy dx$ by changing to polar coordinates. 05
 - **(b)** Evaluate $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^2 + y^2 + z^2) dx dy dz$.
 - (c) Find the directional derivatives of $f(x, y, z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the vector $\overline{i} + 2\overline{j} + 2\overline{k}$.
