GUJARAT TECHNOLOGICAL UNIVERSITY

3rd Semester Civil Engineering - PDDC

Subject Code & Name: X30604 - Advanced Fluid Mechanics

Assignment - 3 (Open Channel Flow - Part-1)

Theory: Date: 08-08-2014

- 1. Classify various types of channels.
- 2. Explain various types of flow in open Channel.
- 3. Derive on expression for most economical Section for
 - i. **Rectangular Section**
 - ii. Trapezoidal Section
- 4. Discuss the specific energy Curve with a neat Sketch.
- 5. Explain Critical, Sub-Critical & Super Critical flow in on open.
- 6. Explain application of specific energy diagram.

Examples:

- 1. A rectangular channel conveys a discharge of 12 m3 / S at a bottom width 3.0 m. Find the bed slope require to carry above discharge if depth of flow is 1.0 .m. Take Chezy's C = 50.
- 2. A circular channel having diameter 0.5 carries water at rate of 0.14 m3/s. Find the bed slope of channel for maximum velocity. Take C=55.
- 3. A 10m wide trapezoidal channel has a side slope of 1.5:1(H: V). The channel is carrying a uniform flow of 100 cumec at the bed slope of 0.0003. Compute the normal depth of flow if Manning's n = 0.012. Also compute mean velocity of flow.
- 4. A trapezoidal channel is having a bottom width of 2.5 and side slope 1.5:1(H: V). It is carrying a discharge of 18m3/s at a depth of 1.5m. Calculate the specific energy and critical depth.
- 5. The discharge of water through a rectangular channel with 6m width and 2m depth of flow is 17cumecs. Calculate (1) specific energy of flowing water (2) critical depth (3) critical velocity (4) minimum specific energy.
- 6. A rectangular channel 4.0m wide was laid at a slope of 0.0004. The incoming uniform flow depth is 2.5. Find the maximum Height of hump can be provided in channel section without causing afflux. Take manning's n=0.014.
- 7. In order to find discharge in a rectangular channel its width is reduced gradually from 2m to 1m and the floor is raised by 0.2m at the reduced section. The approaching flow depth is 1.2m. Calculate the rate of flow in channel if there is a drop of 0.2m in water surface elevation at contracted section.

4) Subcritical Flow, Critical Flow, Super (ritical Flow > froyde Number (fx): The open channel flow is greatly inflyenced by the effects of gravity and VISCOCITY. THE FROYDE NUMBER OF FLOW IS an index which takes in to account the importante of gravity forces and interior forces froude Number (Fo) = Interior forces

gravity forces Fr = VID Where, V = mean relocity D = hydraulic defth top with at free sustaine - Bused on Froude number (Fr) the Flow in open Channel is classified as: (i) Fr & 1.0 - Sub critical flow 08 trunquil flow ox streaminy Flow (ii) Fr = 1.0 --- Critical Flow AMUL (iii) Fx > 1.0 --- Sulex critical Flow ox Shooting Flow or rupid flow of torsential Page No 7 of 32 Only for Reference ... www.civilpddc2013.weebly.com

above equation, the discharge will be maximum when A is maximum or the Parimeter P is minimum, or in other words. We know that Perimeter or sectangually section P= b+22 :. A= bx2 = A+22 b= A Differentiating the above equation with sespect to 2, and equating to 2000, 1 = - A = 2 + 2 $\frac{A}{A^2} = 2$ -. $A = 20^2$ i.e width equal to twice the depth

www.civilpddc2013.weebly.com

Page No 9 of 32

Only for Reference ...

Where, Es=h=Static energy (Potential energy)

Ex= 2 = kinetic energy

when delth of mater is Plotted against Static energy, The Curve so Obtained is Called Static energy curve.

when delth of mater is Plotted against kinetic energy, the Curve so obtained is Called Kinetic energy curve.

Now, the Co-ordinates of Static energy Curve and energy curve are added to obtain specific energy curve.

AMUL

at Sec-2, 92 = B2, since B>B2 hence 9, <92,
As lex discharge diagram, if discharge intencity
increse in subcritical region the delth of flow
goes on reducing. There fore at Section 2 the
buter subface will go down corresponding to
that of at Section 1.

2) Super Chitical Flow !-

If the incoming flow delth y, is in Sylex Chitical flow begine, the flow delth you will be more than y, while 90 yq, This Can be understood agin from discharge diagram, that in sylex chitical orgion as discharge increase the delth of flow goes on increasing. Therefore water Surface will be stoiled to section 2 corresponding to that of at Section 1.

In a Channel Which's bed elevation (hume) to be change.

1) SUB conticul flow

Channel of width B & Carrying discharge Q at a delth J. let the incoming flow is subcritical.

At Section 2, a smooth hump of height az is provided on the floor specific energy at Sec-1 is equal to

E1= 11+29A2

AMUL

At Sec- 2. Since there is a humb of helynt Az, the specific energy at this Section will be less than from section 1 by the amount Az

Only for Reference ...

www.civilpddc2013.weebly.com

Page No 17 of 32

	fly (b) snows a typical specific energy diagram for a given alsohunge. From this diagram it is clear that in subcritical flow. It specific energy reduce the depth of flow will also reduce.
	2) Supra (xit)(u) flow When the Incoming Flow is in supra
	Critical regime shows that depth of flow increse with decrease in specific energy. Therefore water surface will rise at section 2. The mater
	Subface was at M' at Section 1 will go ar to Poin N' at Section 2.
АМИЬ	

Erl	A Bectungular Channel conveys a discharge
	of 12 m3/s at a bottom winth 3.0 m. Find
400 (18)	
-	if delta of flow is 1.0 m. Tack chezy's C=50.
→	We have:- Q=12m3/5 5=8
	$Q = 12 \text{ m}^3/5$ $S = 3$
	b = 3.0 M
	d = 1.0 M
	$A = b \times d$
	- 2 x l
	$= 3 \times 1$ $= 3 \times 2$
	Parimeter P = b+2d = 3+(2×1)
	= 3 + (2 ×1)
	= 5 m
	$R = \frac{A}{0} = \frac{3}{5} = 0.6 \text{m}$
	P
	*
	We know that
	Q=ACVRS
	12 = 3 x 50 x V 0.6 xs
	0.08 = V0.6 · V5
	- 11 /
	Slope 5 = 0.0106
	also say 5 = 93.75
	Designed by Keyur Padashala

Fx-2	A Circulus Chunnel having diameter 0-5 carries
C . C	water at sate of 0-14 m3/5. Find the bed
netra de	Stope of Channel for maximum velocity.
V	Take (= 55.
4	
	Discharge (P= 0-14 m /5
	Diu of Channel D= 0.5 m
	Chezy's Constanc (= 55
	Fox maximum velocity condition in a
-	FOX maximum velocity condition in a circular channel delth of flow y = 0.81P
	:. y = 0.81 D
	= 0.81 X 0-5
-	= 0. 405 M
-	Hydrogriic Radius R=0.3D
	=0.3x0.5
	= 0.15 M
	Perimeter P=220
1.5	· · · · · · · · · · · · · · · · · · ·
	= 2x0.25 x 128° 45 x T80
	P= 1.12 M
	A A
	R=P: A=RXP = 0.15 X 1.12 = 0.168 m2
7	11:01.2 (2. 0.11.1
	NOW Q = AXV
-	Q - AX CVRS
	0.14 = 0.168 x SS V 0.15x S
	S = 0.0015 OR
-	653.4
-	

Ex - 3	Alom wide Trupezoidal Chunnel hus a side
	Slope of 1.5:1 (H:V). The channel is carrying
	a uniform flow 100 cumsec at the bed slope
	of 0.0003. compute the normal depth of flow
	if mannig's n=0.012, Also compute mean
	VPIDCITY OF FIDE
- V	
-7	We have!
1	Bed width B= 10 m
	Side Slope = 1:5:1 (H:V) : m = 1.5
-	BPA SIOPP S = 0.0003
-	Dismarge Q = 100 (2msec = 100 m/s
	munnig's n = 0.012
	Charles Clause V = 8
	Find delthof flow = y = ? Velocity of flow = V = ?
	VF10C17J 81 F10C - V - (
	Asser of Flow A = BY+ MY
	Axeu of flow A = By + my = 10y + 1.5y2
2	, , , , , ,
	Wested Perimeter P = B+ Qy Vm2+1
	= 10 + &y V1.5?+1
	P = 10+3.67
-	R= A = 109+1.55
-	P 10+3.6Y
	107 3.03
-	

$Q = A \times V = \frac{1}{M} \times A \times R^{\frac{3}{3}} \times 5^{\frac{1}{2}}$ $\frac{1}{100} = \frac{1}{0.012} \times (10y+1.5y^{2}) \times \frac{10y+1.5y^{2}}{10+3}$ $\times (0.0003)$ $\frac{1}{100} = 83.33 \times (10y+1.5y^{2}) \times \frac{10y+1.5y^{2}}{10+3.6y}$ $\times 4 \times 10^{\frac{1}{3}}$ $\frac{1}{100} = 2.957 \text{ m}$ $\frac{1}{100} = 2.957 \text{ m}$ $\frac{1}{100} = 4 \times V \qquad A = 10y+1.5y^{2}$ $\frac{1}{100} = 4 \times V $	we know that	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		The second second
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - 1 - 1 -	1 4 8 3 4 6 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q = AXY = m	HXN XX
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 100 1 7/1	- 10x21 1 10x+15
$ 100 = 83.33 \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (10+3.63) \times (10+3.63$	0.012	10+3.6
$ 100 = 83.33 \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (10+3.63) \times (10+3.63$	1	
$ 100 = 83.33 \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (109+1.53) \times (10+3.63) \times (10+3.63$		x (0 0003)
$ \begin{array}{c c} \hline & & & & \\ & & & & \\ & & & &$		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
$A = 2.957 \text{ m}$ $A = 109 + 1.59^2$ $A = 1$	100 = 83.33 x (10)	L51+60] X (107+17A
$A = 2.957 \text{ m}$ $A = 109 + 1.59^2$ $A = 1$		L 10 +3.67
$A = 2.957 \text{ m}$ $A = 109 + 1.59^2$ $A = 1$		× 9×108
NOW, $Q = A \times V$ $A = 10 \text{ J} + 1.5 \text{ J}^2$ $100 \times = 42.69 \times \text{J}$ $= (10 \times 2.957) + (1.5)$ $V = 2.34 \text{ m/s}$ $= 42.69 \text{ m}^2$ $A = 10 \text{ J} + 1.5 \text{ J}^2$ $= (10 \times 2.957) + (1.5)$ $= 42.69 \text{ m}^2$	1/21 2000	/
100 = 42.69 XY = (10x2.957) +(1.5 V = 2.34 m 5 = 42.69 m ² depthof flow = y = 2.957 m	1 = 2.95+ M	<u> </u>
100 = 42.69 XY = (10x2.957) +(1.5 V = 2.34 m 5 = 42.69 m ² depthof flow = y = 2.957 m		1 2
: depthof flow = y = 2.957 m	NOW, Q = AXV	A = 107 +1.57
: depthof flow = y = 2.957 m	100 x = 42.69 XY	=(10x2.957)+(1.5x
: depthof flow = y = 2.957 m	111-2211 m/c	
	1 7 = 9.59 1115	. 7 9 2. 69 N
	dollant flag 2 - V	- 02952 M
The state of the s		
Velocity of flow V = 2.34 m/s	Velocity of Flow	V= 2.34 m/5

Page No 23 of 32

Ex-4	A Trupozodial Channel is having a bottom width
	of 25 and side slope 1.511 (H.V). It is curring
	a discharge of 18 m3 Spc at a depth of 1.5 m.
-	Calculate the specific enougy and conticul depth.
>	Data given
100	Bed width of Champel B = 2.5M
_	Side Slope 1.5:1 (H:V) = m=1.5
	DPP+4 of Flow y=1.5M
	Discharge Q = 18 m3 Sec
	Aspa = By + my
	$= 2.5 \times 1.5 + 1.5 \times 1.5^{2}$
	$= 7.12 \text{ m}^2$
-	Specific energy is given as
	SPECIFIC PARTY IS GIVEN AS
	5 - N 1 02
	2002
	2
	- 1.5 + 18
	2 x 9.81 x (3.12)2
A. 75	E = 1.83 M
25 (11.8)	
	for Contical State of flow
	7 1
	G = A
	9 T
	Where 0-18 m 1500
	Whise Q = 18 m / sec A = (By + My2)
	a = a a
	T = B+QMY,
	Designed by Keyur Padashala
	sea Buse of uchu, thousand

Won Substil	tution
	7
18	(Byc+ myz)
9.81	Btamy

Ex:5	The discharge of water through a rectangular
	Channel with 6m winter and 2m delta of flow
	IN 17 CHMERS, (1) Specific energy of flowing
	water (2) critical delth (3) Critical velocity (4)
	Minimum specific energy.
->	Data given:
	width of Channel B = 6m
	Depth of Flows N = 2 m
	Discharge Q = 17 Camsecs = 17 m/s
	ARRY OF FLOW = BXY
	= 6x2 = 12 m ²
	= 12 m ²
-	Specific enryy E=y+
	29
	9
-	= 7 + 0
	29 (A)2
-	192
	= 2 + - 2 X 9.8 X 12 ²
1000	~ K 1.0 K 12
-	
	E = 2.10 m
-	Discharge Per meter width "9"
7	2 22 17 31
	9= 0 = 17 = 2.83 m3/sec/m
	5 6 , 5

Costical delth of sectuaryular channel is

$$y_{c} = \begin{pmatrix} q^{2} \\ 9 \end{pmatrix}^{\frac{1}{3}} = \begin{pmatrix} 2.83^{2} \\ 9.81 \end{pmatrix}^{\frac{1}{3}}$$

Conticul relocity Vc =

minimum specific energy Emin =

Ex:-6	A soctungular Channel 4.0M wide was laid at a slope of 0.0004. The incoming uniform flow
- Spanispa	depth is 2.5. Find the maximum Helght of
- 14	hump can be provided in Manney Section Without
	Cousing afflux. Take minmig's n=0.014
>	Kiven Data
	Derth of flow y=2.5 m
0	width of Channel B = 4.0m
	BPd 5108P 5 = 0.0004
-	Muniny's n=0.014
	Axeu of flow A=BY
	= 4x2.5
	$A = 10 \text{ m}^2$
	Wetted Perometer P = B+ 24
	= 4 + ex25
	me=
	Thus Hyaryviic rudius R = A
	10
	R = 10 = 1.11m
77 . 10 . 10 .	using manning's formula velocity of flow
	V= L R3 52
	7 1, 3
	= 1 x (1.11) 3 x (0.0004) 2
	0.014
	= 1.53 m/s
	Designed by Keyar Padashala

Discharge Q = AXV
= 10 x 1.53
= 15.3 m3/5ec

Specific energy at rupstman section

$$E_1 = Y_1 + \frac{Q^2}{29A_1^2}$$

$$= 2.5 + 15.3^{2}$$

= 2.62 m

Fox sectuagular channel the critical delth =

$$\frac{y(=\frac{q}{9})^{\frac{1}{3}}}{=\frac{(3.82)^{2}}{9.81}} = \frac{15.3}{4}$$

$$=\frac{(3.82)^{2}}{9.81} = 3.82 \text{ m}$$

specific energy under critical Condition =

= 1.71m

4-1-	maximum height of hump an dedetermined
	using equation
	$E_1 = E_{c} + \Delta_{2} max$
	2.62 = 1.71 = D2max
	-1 Azmax = 0.91m
	maximum height of knump can be provide
- (4	in channel section is 0.91 m
-	
	*
-	

Ex-7	In order to find discharge In a sectangulus Channel it's wath is seduced gradually from an to Im and the floor is rised by oam at the reduced section. The allow- ching flow delth is lam. Calculate the rate of flow in Channel if there is a dool of o.2m in water surface elevation at contracted section
>	WE have !-
	width of Section $1 = B_1 = 2m$ width of Section $2 = B_2 = 1m$ Delth of flow at Section $1 = 3 = 1.2m$ Delth of flow at Section $2 = 3 = 1.2 - \Delta_2 - 2mol$ = 1.2 - 0.7 - 0.7 = 1.2 - 0.7 - 0.7
	Plan of channel
	1 -== 10.2 m
	$J_1 = 1.2m$ $J_2 = 0.8m$ $\Delta z = 0.2m$
	Section AA'
0	nly for Reference www.civilpddc2013.weebly.com Page No 31 of 32 Page No 31 of 32

let Qist	he disc	hyrup	FIOWING	through the
Channel,	-turn	specific	enizyy	through the

Designed by Keyur Padashala