GUJARAT TECHNOLOGICAL UNIVERSITY

3rd Semester Civil Engineering – PDDC

Subject Code & Name: X30604 - Advanced Fluid Mechanics

Assignment - 1 (Kinematics and Dynamics)

Date: 18-08-2014

Theory:

- 1. Describe various types of fluid flow.
- 2. Derive an equation of continuity for three dimensional flow.
- 3. Discuss velocity potential function and stream function and also state how they differ.
- 4. Derive & Explain Euler's Equation of motion.
- 5. Explain "Flow Net". Write its uses and limitations.

Examples:

- 1. A 25cm diameter pipe carries oil of sp.gravity 0.9 at a velocity of 3 m/s. At another section the diameter is 20 cm. find the velocity at this section and also find mass rate of flow of oil.
- 2. The velocity in x y and z directions are given by

$$u = 2x - yt$$

$$v = y - zt$$

$$w = x - 3z + t$$

Determine the acceleration and velocity at point (1, 1, 2) and t = 1.

- 3. In a two dimensional incompressible flow, the fluid velocity components are given by U = x 4y and V = -y 4x. Show that velocity potential exists and determine its form. Find also the stream function.
- 4. Water is flowing through a pipe having dia 30 cm and 15 cm at the bottom and upper end respectively. The intensity of pressure at the bottom end is 29.43 N/cm2 and the pressure at the upper end is 14.715 N/cm2. Determine the difference in datum head if the rate of flow through pipe is 50lit/s

Q-1 Describe variouse type of fluid flow. The fluid flow is clustica as

1) Steady and unstrady flows

Uniform and mon- uniform flow Luminay and turbulent flow)

Compressible and incompressible flow

Rotational and improvational final one two and three almonsioner flow.

Type 1, 2 and 3 are described in Assignment of

4) Compressible and incompressible flow Compression from is that type of flow

in which denday at the fluid Changes from foing to Point or in other works the denday est is not Constant for the fluid . This, majormettically, for Compressible flow

trustant & a

In compressible flow is that flow in Which are the density is consumt for the the Flyid Flow. Liquids are generally incompressible While goses are compressible. mathematticany. for incompressible flow

P = Constant

5) Rotational and Irrotational flows: Rotational flow is muy type of flow in which the fluid Partiales while flowing along stramlines. also solder about their Hew own axis And it the fluid furticules while flowings along strum lines, do not potate about their own existney that type of flow could implusion us flow.

6) - 9)- one dimensional Flow.

One dimensional titus is that type of flow in which the flow from mercy such as Velocity is threaten on these age of the constitution of the age of the constitution of one state of constitution of one state of constitution of one state of constitution of the state of constitution of the state of constitution of the constitut

2=f(x), V=0 und 60=0

b) Then diamnstown Flow is then type of flow in which the reliefly is a function of time and the recompular space for a standy that the administration of the and the recompular space for a standy the diamnstown flow is verying is a function of the stand space arising only the Warding of the space of the time of the space of the

2=5.(2,4), 4=52(x,4) and W=0

()- Three dimensional Flow

Three dimensional flow is that type of flow in Which the velocity is a trunchase of time and time and time and time and time and time all times and time and time and time and times and times and times of the times of time

21= fr (21,4,2), V= fr(21,4,2) and

W= F3 (21, 4, 2)

6-2 Desire an equation of Continuity for three dimensions fool.

> Consider of took elements of length

Ox dy and do in the direction of or y and 2 let u. y and 10 are the intervelocity continuation in or y and 2 direction respectively mass of finial entropy the face ABCD for second

= P x Velocity in 2-direction x Arey of

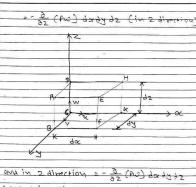
= P x 2 x (dyxd2)

Then muss of fluid leaving in the face EFORH PRS Second

= Pridyd2 + Dx (Pridyd2)doc

= Muss through ABCD- muss through

= Pridydz - Pridydz - BCD - muss throngy Ef ar Pris Smould = Pridydz - Pridydz - BCPridydz doz


= Pridyd2 - Pridyd2 - 3 (Pridyd2)doc =- 2 (Pridyd2)dx

= - 8 (Pa) da dydz (: dydz is town

Similary, the met Boin of massivy-direction

Designed on Facult Repairs 1

ine galve of musses

Since the mass is neither Created nor destroyed in the fluid element, the net invrue of mass per uni- time in the fluid element must be parally to the rate of increase of mass of fixia in the clement. But must of fivid in the element is P. dx, dy, de and its supp of increse with time is of (Pidx, dy, dz) or of dx dydz.

Eggisling the two expressions

(P2)+ 3 (PV) + 32 (PV) 12242 = 3P dx dyd2

3 (Pa) + 3 (Pa) + 3 (Pa) =0

[concening day, do from both sides

Designed by Reyur Paga Ca :

Q-3 Discuss velocity formulal function and Strum fuction aund also state how they ditter. * Velocity Potential truction It is defined as a scalar function of Stace and time guen that it's megative distrative with 85. to any direction sivis vilocity in that direction it is dimetra by o (Phi). It is differed as 0 = F(x, 4, 7) fox Strady Flow such that N= - 90 -1 06 - = V 05 - cw Whize U. Vand W age the Components

of velocity in 21.7 and 2 dispersion respectively

The velocity constructs in Study of their

transfer are given by

Class 8.5 20. 3 25 1 - 5

holon ar : Visity Contained by soular director

Clas velocity conferent in tunguation

The Continuity equation for an incompression strate from 15 24 20 1 20 0

30 + 30 + 30 --- (3)

This can is a lattace equation

for two dimension case, eq 3 reduces

If any value of that satisfies the laties of this courseland to some face of the father fathering typicion, the matational composition was allowed by

Designed by Reyar Padeshill

Substituting the values of 21, V and V
from 19" in the above operational conservant
with 3th

12 2 3x (80) 8 80 30

Similiany

$$wy = \frac{1}{2} \left[\frac{30}{200} + \frac{30}{200} \right]$$

$$\omega_{x} = \frac{1}{2} \left[-\frac{30}{300} + \frac{30}{3000} \right]$$

it o is a Continuos function, then

· 102 = 109 = 40x =0

the flow sotational Component's are zero the flow is equity importational House the Properties of the Potential of are

1) it velocity formation (0) exists the flow should be important (0) subtries the latter of the resident formation for solution for sol

* Strum function " It is defined on the Solve from the structure of space and time such that its function of space and time such that its function sives the velocity confirmed at Aght angles to had that alone is is democred by "(Psi) and defined only to the top the formation that it is democred by "(Psi) and defined only to the formation that it is democred by "(Psi) and defined only to the formation that it is democred as "(") "They would be such as the formation that it is democred as "(") "They would be such as the such as th

The Velocity Comformation of Windows the Constitution in term of Street Care of Windows in term of Street Care of the Constitution of Street Care of Street

Chica cix = sayar Acoust

The Constituty per for these dimensional

substituting the voluce of 2 and 1 from

3x (-34) + 3 (3V) =0

Designed by Keyur Pedisthah

08 -80 + 80 = 0

Himir existence of 10 miles a fossible cult of this flow. The Flow may be retailed or loss testional

The notational Component to is given by

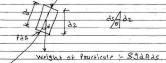
Substituting the varies of 21 and 4 from some of 10 in the above resultance compressed

20 (1) 12 1 2 2 (22) 24 (-34)

= x \[\frac{3\cdot }{3\cdot 2} + \frac{3\cdot }{3\cdot 2} - 0

The foolerains of stame & (4) are

The stream & (4) exists, it is a fossible
that of style from the many he mentions


cx implational

1) it sixum function (U) satisfies me tailor 14. It is a possible cuse of an implestance! 5100.

a-4 Drive & Explain Euler's equation of

This is the red of moston to which the for control of considering the moston are think extended the clone of the most are think extended the clone

Condate a fivia function along a structure as should in the 12 days for area of conservation and do is the income relative the effective are the forces arising on flyid surfaces are

(i) haright of Particle 39 à E de (ii) Pressur force in the direction of flow PAA (upotroum fore)

(111) Pressure force where down stram face (P+ 30) de in the direction offosite to direction offices

offasite to direction of from

As Prx Newsou's Serond Townet motion.

The requirement force on the fluid premains must be equal to the Product of muss and according In 5-dispetion HIMLE.

EFS = MXQ

PAA - (P+ 30 ds) AA - 39 dsd A COSE = 32A25 95

Here as is the acceleration of fluid element come that stram that Dividing whole

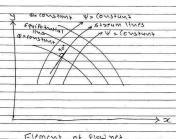
2 2P + 9 (05 0 + 95 = 0

The acceleration usis dy where Vist · . V= 8(5,7)

Total dirivation of V can be withing dy : 34 ds + 34 d+

as: 3v ds + 3v 0x 442 V 34 + 34

IN case of smady flow 34 =0 J 05= 1/= 34



2	Luez
- 11	
	Now, eg becomes
100-10	A STATE OF THE STA
243	3 35 + 9 27 + 28 20
	3 35 1 3 30 + 30 20
	Since 8 2 and Vines and the
	Since & 2 and V man are the function
4	may be seplaced by total deprovative
0	House 3 25 + 9 ds + 1/2 dx = 0
0 .	3 25 3 35 .65
	02 96 + 395 + 39x + 19 x 50
4	3 + 295 + 291 + 191 = 0
	Part to the second seco
-	may is known as Eulas's rom of
	motion and applicable anales Fallowing
	3550 PP 11 0 M 5
	(1) The second of the second o
200 124	(1) The motion of fluid is along a
0	Strum line
	(11) The flow of flyid is strady
1 1 1	OID The fluid is frictionics
11.0	
	The second secon
_	
_	
-	
	The second of th
_	
_	

(9-5 Explain "Flow not", whit it's uses and

\$ A Trid Obtained by Annuling a sortic of the equilibrium lines and the extrem lines is courted a fear next the first what is an impersional foot in counting analysing these dimensional imposational flow Problems.

PILLURAL OF FLOW NEX

Page No: Examples Ex-1 A 25 cm dia Pile carries oil of sp. gr o. a at a velocity of 3 m/s. at amother Section the dia is so in find thereoity and also mass rate of flow of oil

as section 1 01 = 25 Cm A = 7 2 - 7 x 0 252

= 0.040 3

Via 3 mis at Section (2)

Dr = No cm

A2 - 1 2 - 1 0.20 > 0.0314 m3

mass oute of flows of oil = 9 AIYIZ ATYO

sifizing Continuity 19th at section 1 22 . O. DYOX 8. D = O. D. 31V X V2 1. V2 = 0.049x3 = 4.68

Designed by Keyur Padashola

: V2 = 4.58 mis

mass support flow of oil

= muss donn'sy x &

2 PXPXVI

SP. gr. of oil > Density of oil ornsity of outre

serving of oil = see are of oil x ornaing of

2 900 kg/m3

". mass regle of flow =

= 900 x 0.049 x 3.0 kg/s

= 132.23 Kg/s

The velocity In or, 4 and 2 disection are given by 4 = 2x-4+

V= Y-2+ W= x-32++ Descrime the acceleration and velocity 4+ Point (1,1,2) and +=3

-> veiocity component at all 1,2) are x=1, y=1, 2=2 8 t=1 1. 21=1

12 4-Qx = 1 - 2(1)

w= x-32++

= 1-3(2)+1 VPlocity YPCYOX Y at (1,1,2) = 11-11-4K Resultant Velocity = 1 012+ 42+1.2 = 1 15 + (-1)5 + (-4)5 = 4.24 Units.

	Date:
	Accelebration is given by ear
	ax 2 4 2 4 4 34 + 824 + 824 -
-	92 - 3 34 + 3 34 + 34 + 34 + 34
	92 = 3 30 + 30 + 10 30 + 30 35 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 + 30 5 +
$\overline{}$	NOW VETOCITY COMPONEMES WE have
	$\frac{9x}{9x} = 5 \frac{9\lambda}{9x} = -6 \frac{95}{9x} = 0 \frac{95}{9x} = 0$
	3x 2 3x 3 3x 2 3x

Substituting this value an= (12x-7+) & + (4-2+)-+

2 + 3 - : = 2 ay = 0 + (y-2t): + (x-32+t)-t+(2)

92 = 1 +0 +17 +1

= 14

accuration is

A = ascit ayi+ azk = 21 + 15 + 14 K

OX REGULTUMA

A = 122+12+142

= 14.177 Unit

Ex-3 In a two-dimensional incomposible flow The fluid velocity components are given by u= 2-47 and v= -4-4x. Show that velocity potential exists and determine it's form. Find also the stram function. 712 X-44 V=-Y-4x time flow is continuous and velocity Solemaias exists P = Kelocity Potrutial jet velocity combonents in trams of velocity formation 15 given by 20 = - 12 - (2-42) = - 2 +4A 90 - - x = - (-3-12)= 2+1x the sample of (1) meder of - of the ferry white is a constant of Indignation - his constant can be at of y City page. I. May show the price price of (iii) Will Drs. 20 y We applied by Reyor Fridastinia

99 = 0+ 4x + 2x	
PG 70	
	CHOSE DESIGN
But from (9" (11) we have 30 =	
24 =	3+45
1	100
40 13	
requesting the swo values or	
30 we get.	
27	
	- Carlon
12+ 3C = 7+4x 0x 3C = 4xh	
03 - 25 -)
Intrograting the above por we	9 07
1 2000	U-L
?	
C= 3 + C1	
C- 72 111	
	1
where a is a constant of larger which is independent of	13100
to tentanguitaria si assialo	2 and 4
	, ~
TUNING IS COURT TO PLAN WIGH	= 3
	.2
Substituting the Yorar of Cla	11:11 Pag.
2	
D=-2 +424 +3	
7 2 3 3	
1 22 1 6 7 7	
s Yalur of Strum Fu"	
+	
10+ U= 5+xum f	
The visionisy components in the	ms of
EIDUM FN UZE	
DW - V2-7-42 1	LV.
	The second section of the second

-	30 = - 51 = - (21-12) = - 25 + 12 - (D)
	Integrating 19 (12) with a way get
	V = -4x - 4x + x (vi)
_	which is a constant of his gration
0	<u> </u>
	Direction to Car mari A million
_	34 - 27 - 0 + 3K
	But from of (v) we have
0	24 2 2444
	-2 + 3k - 24 44 02 3k 144
	Integrating the above 19th words
	K > 442 - 242
_	substituting the values of kin can (vi)
	V = -32C+ & 2 ² + 23 ² Ossigned to Taylor Technologic

Ex-y Matra is Flowing through a fift having all a go an is an at the bottom and inference of the following o

P2 = 0.15 m, A2 = 0.018 m

P2 = 14.215 m, A2 = 0.018 m

P2 = 14.215 m, A107 m

Rate of flow = 50 = 0.05 m/s

Q = 50 = 0.05 m/s

A1 V1 = A2 V2 = 302+06 flow (@) = 0.05

V1 = Q = 0.05 = 0.704 M/s

Y7 > 8 - 0.05 2.78 m/s

APPlying Branowii's 19 at Enthon 182 we

$\frac{P_1}{P_2} + \frac{\sqrt{2}}{2} + \frac{2}{2} = \frac{P_2}{P_3} + \frac{\sqrt{2}}{2} + \frac{2}{2}$
: 22-21, P1 + V1 - P2 V2 P9 29
= 024.43×10°, (0.020) 14.315×10 000×4.8° 374.8° 1000×4.8°
-1 (4.78 -2 x4.8

- 14.60 m

" Diffrance in advanticud = 14.60m