GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-III • EXAMINATION – SUMMER 2013

Subject Code: X30604 Date: 17-05-20 Subject Name: Advanced Fluid Mechanics			
Tin	ne: 02	2.30 pm - 05.00 pm Total Marks: 70	
Q.1	1. 2. 3. (a) (b)	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Explain hydrodynamically smooth and rough pipe. Explain "flow net". Write its uses and limitations.	07 07
Q.2	(a)	Obtain equation of continuity for three dimensional flows by Cartesian co- ordinates	07
	(b)	The velocity in x. y and z directions are given by $u = 2x - yt$, $v = y - zt$ and $w = x - 3z + t$ respectively. Determine the acceleration and velocity at point (1, 1, 2) and t = 1.	07
	(b)	OR Discuss the specific energy curve with a peat sketch	07
03	(U) (a)	Defines the term stream function. How it differs by potential function	07
Q.3	(a) (b)	In a two dimensional incompressible flow, the fluid velocity components are given by $U = x - 4y$ and $V = -y - 4x$. Show that velocity potential exists and determine its form. Find also the stream function.	07
Q.3	(a) (b)	Obtain equation of continuity for the fluid flow in polar co- ordinate. In a two dimensional flow of compressible fluid, the tangential component of velocity $V\alpha = \frac{Contrac}{r^2}$, where C is constant. Using equation of continuity, determine the expression for radial velocity V. Also find the magnitude and direction of resultant velocity.	07 07
Q.4	(a)	Explain Hardy cross method.	07
	(b)	Describe various types of hydraulic models. OR	07
Q.4	(a) (b)	Describe Rayleigh method for dimensional analysis. Explain and prove Buckingham's π – theorem.	07 07
Q.5	(a)	Explain the concept of boundary layer. Derive the expression for displacement thickness.	07
	(b)	Describe Reynold's experiment and discuss the laminar and turbulent flow in pipe.	07
05	(n)	OR Explain formation of boundary layer with next skatch and also explain	07
Q.3	(a)	separation of boundary layer.	07
	(b)	Explain Prandtle's mixing length theory.	07

Enrolment I	No
-------------	----

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC SEM-III Examination May 2012

Subject code: X30604

Subject Name: Advanced Fluid Mechanics

Date: 17/05/2012

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Derive an expression for most economical section for a rectangular shaped open channel section.	07
	(b)	Explain and Prove Buckingham's π – Theorem.	07
Q.2	(a) (b)	Derive an expression for gradually varied flow and state the assumptions made in it. Derive an expression for the velocity distribution for viscous flow through circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.	07 07
		OR	
	(b)	Explain Hardy Cross method of analysis of flow in pipe net works.	07
Q.3	(a)	(i) Derive and explain Euler's Equation of motion.	04
		(ii) Find the velocity and rate of flow of water through a rectangular channel of 6m wide and 3m deep, when it is running full Bed slope 1 in 2000 Take $C=55$	03
	(h)	Explain Prandtle's mixing length theory	07
	(0)	OR	07
03	(9)	If the velocity distribution in boundary layer is given by $u/U = v/\delta$ determine the	07
Q	(a)	displacement thickness momentum thickness and energy thickness	07
	(h)	Determine the maximum discharge of water through a circular channel of diameter	07
	(0)	1 5m When the bed slope of channel is 1 in 1100 Take C=60	07
0.4	(a)	Describe the Rayleish method for dimensional analysis.	07
~ ··	(u) (h)	Define "Dimensional Homogeneity" and test whether following equations are	07
	()	dimensionally homogeneous or not.	01
		$1 \frac{2}{1} \frac{1}{1} fh^2 \qquad \frac{3}{2}$	
		(i) $v = \frac{1}{n} R^{\overline{3}} S^{\overline{2}}$ (ii) $h_f = \frac{J v}{2gD}$ (iii) $Q = 3.33 L H^{\overline{2}}$	
		OR	
Q.4	(a)	Derive the relation for laminar flow between two parallel plates the mean velocity is	07
		equal to two-third of the maximum velocity.	
Q.4	(b)	Describe Reynold's experiment and discuss the laminar and turbulent flow in pipe.	07
05	(5)	Obtain an equation of continuity for three dimensional floor	07
Q.5	(a) (b)	Ubitain an equation of continuity for infee dimensional flow.	07
	(U)	Explain formation of boundary layer with sketch and also explain separation of	0/
05	(a)	UK Discuss the elessification of channel slopes	07
Q.3	(a) (b)	Discuss the encoding on channel slopes.	07
	(1)	בוארמא אור ארכונות בוובוצי בעויד אונו מ וובמו ארכונוו.	07

(b) Discuss the specific energy curve with a neat sketch.

Time: 10.30 am – 01.00 pm **Total Marks: 70**

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

P.D.D.C. Sem- III Examination December 2010

Subject code: X30604

Subject Name: Advance Fluid Mechanics Date: 16 /12 /2010 Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Explain Buckingham π theorem method Derive the expression for the velocity distribution for viscous flow through circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.	07 07
Q.2	(a) (b)	Obtain an equation of continuity for three dimensional flow. Derive an Equation of Gradually varied flow, and write assumption made in it. OR	07 07
	(b)	Explain separation of boundary layer.	07
Q.3	(a) (b)	Expiain formation of boundary layer with sketch. In a two dimensional fluid flow the component of the velocity along the x-axis is given $U = 3x-2x^2y+y^3$. Determine the component of the velocity along the y-axis for the Condition of continuity of flow.	07 07
Q.3	(a) (b)	Explain Hydrodynamically smooth and rough pipe. Determine the length of back water curve caused by an afflux of 1.5 m in a rectangular channel at width 45 m and depth 2.0 m. The slope of the bed is given as 1 in 2000. Take meaning's $N = 0.03$.	07 07
Q.4	(a) (b)	Discuss the classification of channel slopes Laminar flow of an oil with maximum velocity at 5.6 m/sec in a 30 cm diameter pipe. If dynamic viscosity of an oil is 0.18 kg sec/m. Calculate shear stress at pipe wall and within fluid 6.0 cm from the pipe wall.	07 07
Q.4	(a) (b)	Explain Hardy cross method A model of spillway is made to test the flow. The discharge and velocity of flow over the model were measured as 2.5 m /sec and 1.5 m/s. Find the discharge and velocity over prototype which is 50 times larger them it's model.	07 07
Q.5	(a) (b)	Discus the specific energy curve with a neat sketch In a two dimensional incompressible flow, the fluid velocity components are given by $U = x - 4y$ and $V = -y - 4x$. Show that velocity potential exists and determine its form. Find also the stream function.	07 07
Q.5	(a) (b)	Explain Prandtle's mixing length theory Find the expression for the drag force on smooth sphere of diameter D, moving with a uniform velocity V in a fluid of density ρ and dynamic viscosity μ	07 07