GUJARAT TECHNOLOGICAL UNIVERSITY

2nd Semester Civil Engineering – PDDC Subject Code & Name: X20001 - Mathematics-II

Sr.	
No.	Course content
1.	Beta and Gamma Functions : Definition, Basic properties, Relation between Beta and Gamma
	functions, Use in evaluation of definite integrals, Duplication formula via Beta Gamma.
2.	Laplace Transforms : Definition, Linearity property, Laplace transforms of elementary functions,
	First shifting theorem, Differentiation and integration of Laplace transforms. Inverse Laplace
	transform , Laplace transforms of derivatives and integrals, Convolution theorem, Application of
	Laplace transforms to solve ordinary differential equations
3.	Fourier Series : Periodic functions, Dirichlet's conditions, Fourier Series, Euler's formulae, Fourier
	expansion of periodic functions with period 2 , Fourier Series of even and odd functions, Fourier
	series of periodic functions with arbitrary periods,
	Half – range Fourier series.
4.	Fourier Integrals and transforms : Fourier integral theorem (Only statement), Fourier Sine and
	Cosine integrals, Fourier Transforms, Fourier Sine and Cosine transforms
5.	Higher Order Differential Equation : Linear differential equations of higher order with constant
	coefficient, Method of variation of parameter, Cauchy's homogeneous linear equation, Legendre's
	homogeneous linear equation, Simultaneous linear differential equations, Application of linear
	differential equations, Modelling : Mechanical vibration system, Electrical circuit system & Deflection
	of beams.
6.	Partial differential equations : Formation of partial differential equations, Directly integrable
	equations, Lagrange's equation, Solution of special types of non-linear partial differential equation
	of the first order, Equations reducible to the standard forms, Application of partial differential
	equations, Boundary value problems and method of separation of variables, Vibrations of a stretched
	Elastic string.
7.	Z – transforms : Z transforms of the standard functions like e^{kx} , λ^n , Sin hx, Coshx.
	Linearity property, Damping rule, Initial value and final value problem.
_	
	rences Books:
1.	Elementary Engineering Mathematics by Dr. B.S. Grewal,
	Khanna Publishers, New Delhi.
2.	Higher Engineering Mathematics by Dr. B.S. Grewal,
	Khanna Publishers, New Delhi.
3.	A Textbook of Engineering Mathematics by N.P. Bali, Ashok Saxena & Iyengar,
	Laxmi Publications (P) Ltd., New Delhi.
4.	Advanced Engineering Mathematics by H.K. Dass
_	S. Chand & Co. (Pvt.) Ltd., New Delhi.
5.	Engineering Mathematics Vol. – I, II, III by G.V. Kumbhojkar, C.
	Jamnadas & Co., Bombay.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II • EXAMINATION – WINTER 2013

1 DDC - SEMESTER-II · EARMINATION - WINTER 2015				
Sub	ject	Code: X20001Date: 18-12-2013Name: Mathematics-IITo 4 LM - L - 70		
		2.30 pm - 05.30 pm Total Marks: 70		
Instr				
Q.1	(a)	1) Define Beta function. Compute $\beta(2.5, 1.5)$.	03	
		2) Prove that $\int_{0}^{1} x^{3} (1 - \sqrt{x})^{5} dx = 2\beta(8,6).$	04	
	(b)	1) Form the partial differential equation from $z = ax + by + a^2 + b^2$	03	
		2) Solve $\frac{\partial^2 z}{\partial x^2} = xy$	04	
Q.2	(a)	Solve $\frac{d^{3y}}{dr^{3}} + 2\frac{d^{2}y}{dr^{2}} + \frac{dy}{dr} = e^{-x} + \sin 2x$	~-	
		un un un	07 07	
	(b)	Solve $y'' + y = \tan x$ by the method of variation of parameter. OR	07	
	(b)	Solve $x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log x).$	07	
Q.3	(a)	Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0,3), $f(x+3) = f(x)$.	07	
	(b)	State Convolution theorem and using it, evaluate $L^{-1}\left\{\frac{s}{(s+2)(s^2+9)}\right\}$.	07	
		OR		
Q.3	(a)	$f(x+2\pi) = f(x).$	07	
	(b)	Using Laplace transform method, Solve $y'' + y = t$, $y(0) = 1$, $y'(0) = -2$	07	
Q.4	(a)	Express $f(x) = x$ as a half range cosine series in $0 < x < 2$. $f(x+4) = f(x)$.	07	
	(b)	1) Find $L\{(t+2)^2 e^t\}$.	03	
		2) Find $L^{-1}\left\{\tan^{-1}\left(\frac{2}{s}\right)\right\}$	04	
	<i>.</i>	OR	~-	
Q.4	(a)	Find a Fourier series to represent x^2 in the interval $(-l, l)$, $f(x+2l) = f(x)$.	07	
	(b)	1) Find $L^{-1}\left\{\frac{1}{s^2 - 5s + 6}\right\}$.	03	
		2) Find $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\}$.	04	
Q.5	(a)	1) Solve $p + q = \sin x + \sin y$.	03	
-		2) Solve $r(y - z) = -r(z - y) = -r(z - y)$	04	

2) Solve
$$x(y-z)p + y(z-x)q = z(x-y)$$
. 04

(b) Express the function $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$ as a Fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda.$ OR

Q.5 (a) Solve the equation
$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$$
, $u(x,0) = 4e^{-x}$ by the method of separation 07 of variables.

(b) 1) Solve
$$(D^4 - 4D^2 + 4)y = 0$$
 03
2) Solve $p(1+q) = qz$. 04

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II • EXAMINATION - SUMMER 2013

-	Subject Code: X20001Date: 04-06-2013Subject Name: Mathematics-II				
Ĵ.			Total Marks: 70		
insti u	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
Q.1	(a)	(i) Define Gamma and Beta Functions.	02		
		(ii) Show that $\int_{-\infty}^{\infty} \frac{e^{-3t}}{\sqrt{t}} dt = \sqrt{\frac{\pi}{3}}$.	03		
		(iii) Find $L(t \sin t)$.	02		
	(b)	(i) Find $L(f(t))$ if $f(t) = \begin{cases} 1, 0 < t < 2\\ 3, t > 2. \end{cases}$.	03		
		(ii) Find the inverse Laplace transform of $\frac{3s-2}{(s+2)(s^2+1)}$. 03		
		(iii) State Relation between Gamma and Beta Functions.	01		
Q.2	(a)	(i) State Convolution theorem. Using it find $L^{-1}(\frac{1}{(s+1)(s+1)})$	04 (14)		
		(ii) Solve : $y'' + y = t$, $y(0) = 0 \& y'(0) = 1$. Using Laplace	transform. 03		
	(b)	(i) Evaluate $\int_{0}^{\infty} e^{-t} \cosh t dt$ by using Laplace transform.	03		
		(ii) Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{(\cot\theta)} d\theta = \frac{1}{2} \sqrt{\frac{1}{4}} \frac{3}{4}.$	04		
		OR			
	(b)	(i) Find the inverse Laplace transform of $\log(\frac{s+2}{s+5})$.	03		
		(ii) Evaluate $\int_{0}^{1} \frac{dx}{(1-x^3)^{\frac{1}{3}}}$ by using Gamma-Beta function	s. 04		
Q.3	(a)				
	(b)				
	(c)		04		
Q.3	(a)	OR Find the Fourier series expansion of $f(x) = e^{-x}, 0 < x < 2$	2π. 05		

(b)	Find the Fourier cosine transform of $f(x) = -$	$\begin{cases} x^2, -1 < x < 0\\ 1 + x, 0 < x < 1\\ 0, x > 1. \end{cases}$	05
-----	---	--	----

	(c)	Find the Fourier sine series of $f(x) = 3 - x, 0 < x < 3$.	04
Q.4	(a)	Solve $(D^2 + 3D + 2)y = x^2 + e^{-x}$.	05
	(b)	Using the method of variation of parameter, solve $y'' + y = \cos ecx$.	05
	(c)	Solve $y'' + 9y = 3x^2$.	04
		OR	
Q.4	(a)	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x.$	05
	(b)	Solve $x^2 y'' - xy' + 4y = \cos(\log x) + x \sin(\log x)$.	05
	(c)	Solve the simultaneous equations: $\frac{dx}{dt} = -wy, \frac{dy}{dt} = wx.$	04
Q.5	(a)	Form the partial differential equation from	05
	()	(i) $z = f(x^2 + y^2)$, (ii) $f(xy + z^2, x + y + z) = 0$.	
	(b)	Using the method of separation of variables, solve $u_{xx} = 25 u_y$.	05
	(c)	Define Z-transform. Find the Z-transform of the sequence $\{a^m\}, m \ge 0$.	04
		OR	
Q.5	(a)	Solve :	05
		(i) $\frac{\partial^2 z}{\partial x^2} = \cos x$, (ii) $\frac{\partial^2 z}{\partial x \partial y} = x^2 + y^2$	
	(b)	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ by using the method of separation of variables.	05
	(c)	State the linearity property of Z-transform. Find the Z-transform of	04
		{ f(k) }, where $f(k) = \begin{cases} 7^k, k < 0\\ 5^k, k \ge 0. \end{cases}$	

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER - II • EXAMINATION - WINTER 2012

Subje	ect co	Dete: X 20001 Date: 12/01/2013	
-	: 10.	ame: Mathematics - II 30 am - 01.30 pm Total Marks: 70	
msu	1. A 2. N	Attempt all questions. Attempt all questions wherever necessary. Figures to the right indicate full marks.	
Q.1		Attempt the following.	
	a)	Define Beta function. Evaluate $\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$.	3
	b)	Evaluate $\int_{0}^{\infty} e^{-x^2} dx$ in terms of gamma function.	3
	c)		2
	d) e)		2 2 2
	0		4
	f)	Solve : $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$	2
Q.2	(a)		6
	(b	(-)	4
		1) $e^{-3t} (2\cos 5t - 3\sin 5t)$ 2) $\frac{1 - e^{t}}{t}$	
	(c)	Using Laplace Transform solve $y'' + y = t$, $y(0) = 1$, $y'(0) = 0$.	4
Q.3	(a)	Solve the following differential equations: 1) $(D^2 - 3D + 2)y = \cos 3x$ 2) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$	6
	(b)	Using method of variation of parameters, solve the differential equation : $y'' - 6y' + 9y = e^{3x} / x^2$	4
	(c)	Find half range sine series of $f(x) = x$ in $0 < x < 2$	4
Q.4	(a)	Find the Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the range $0 \text{ to } 2\pi$.	5

(b) Find the Fourier series for the function
$$f(x) =\begin{cases} \pi x & \text{if } 0 \le x \le 1\\ \pi(2-x) & \text{if } 1 \le x \le 2 \end{cases}$$

(c) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$
(a) Find the Fourier series for the function $f(x) = x - x^2$ in the function $f(x) = x - x^2$ in the function $\pi \le x \le \pi$.
(b) Solve $(1 + x)^2 \frac{d^2 y}{dx^2} + (1 + x) \frac{dy}{dx} + y = 2 \sin[\log(1 + x)]$
(c) Find the Z-transforms of
1) $e^{a\pi}$
2) $(n + 1)^2$
(d) Solve the following equations:
(f) $p \tan x + q \tan y = \tan z$
2) $(z - y)p + (x - z)q = y - x$
(g) Form the partial differential equation from
1) $(x - a)^2 + (y - b)^2 + z^2 = c^2$.
2) $z = f(x^2 - y^2)$
(c) Using the Fourier integral representation, show that 4
 $\int_{0}^{\pi} \frac{\partial \sin x \partial u}{1 + \omega^2} d\omega = \frac{\pi}{2} e^{-x} (x > 0)$.
(g. 7 (a) Obtain the complete solution of the equations:
1) $p(1 + q) = qz$
2) $p + q = \sin x + \sin y$
(b) Find the Fourier sine transform of $e^{-|x|}$.
4 (c) Solve the equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that $u(0, y) = 8e^{-3y}$ by the method of separation of variable.

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC SEM-II Examination May 2012 Subject code: X20001 Subject Name: Mathematics-II

Date:	Date: 22/05/2012 Time: 10.30 am – 01.30 pm Total Marks: 70			
Inst	ruct	ions:		
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	(i) $\beta(3,4)_{=}$	01	
		(ii) Write relation between Beta and Gamma function. (iii) Show that $\beta(m,n) = \beta(n,m)$	01 01	
		(iv) Define Gamma function	01	
		(v) Express integral $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$ in term of gamma function.	03	
	(b)	(i) Find the period of cos2x	02	
		(ii) Find $L(e^{4t} + \cos 3t + t^4)$	02	
		(iii) Solve differential equation $D^2y - a^2y = 0$	03	
Q.2	(a)	(i) Find $L^{-1}\left(\frac{2s^2-6s+5}{(s-1)(s-2)(s-3)}\right)$	04	
		(ii) Find $L(e^{-3t}(\sin 5t - \cos 5t))$	03	
	(b)	(i) Use Convolution theorem to evaluate $L^{-1}\left(\frac{s}{(s^2 + a^2)^2}\right)$	03	
		(ii) Using Laplace transform solve $y'' - y = e^{2t}$, $y(0) = y'(0) = 0$	04	
		OR		
	(b)	(i) Evaluate $L\left(e^{3t}\int_{0}^{t}\frac{\sin t}{t}dt\right)$	03	
		(ii) Using Lapalce transform solve $y'' - 2y' + y = e^t$, $y(0) = 2$, $y'(0) = -1$.	04	
Q.3	(a)	(i) Find the Fourier series for $f(x) = x^3$, $-\pi \le x \le \pi$, $f(x + 2\pi) = f(x)$.	03	
		(ii) Find the Fourier series for $f(x) = 1$ if $0 \le x \le \pi$ and	04	
		$f(x) = 0$ if $\pi \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$.		
	(b)	Find a Fourier series for $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$. Hence prove that $\frac{\pi^2}{12} = \frac{1}{1^1} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	07	
		OR		
Q.3	(a)	(i) Express $f(x) = x$ as a half range cosine series in $0 < x < 2$. (ii) Express $f(x) = 1$ for $0 \le x \le \pi$ and $f(x) = 0$ for $x > \pi$ as Fourier sine	03 04	
		integral and hence evaluate $\int_{0}^{\infty} \frac{1 - \cos \pi \lambda}{\lambda} \sin x \lambda d\lambda$		
	(b)	(i) Expand $\pi x - x^2$ in half range sine series in the interval $(0,\pi)$ up to the first three term.	03	

Q.3 (b) (ii) Find the Fourier sine transform of
$$e^{-|x|}$$
. Hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx$.

Q.4 (a) In an L-C-R circuit, the charge q on a plate of a condenser is given 07 by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E \sin pt$. The circuit is tuned to resonance so that $p^2 = \frac{1}{2}$ 1/LC. If initially the current i and the charge q be zero, show that, for small values of R/L, the current in the circuit at time t is given by (Et/2L) sin(pt).

(b) (i) Solve differential equation $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2$ 03

(ii) Solve differential equation

$$(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin(\log(1+x))$$
OR

(i) Solve differential equation $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$ (ii) Solve differential equation $(D^2 + 1)y = \sin x$ 03 Q.4 (a)

04 04

(b) (i) Using variation of parameter solve
$$\frac{d^2y}{dx^2} + 4y = \tan 2x$$
 04

(ii) Solve
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6y = e^{3x}$$
 03

Q.5 (a) (i) Form partial differential equation from
(A)
$$z = f(x^2 + y^2)$$
 (B) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
(ii) Solve (mz - ny) n + (ny - lz) a = ly - my

(ii) Solve
$$(mz - my)p + (mx - nz)q - nz$$
 04
(b) (i) Solve $p^2 + q^2 = x + y$ 03

(ii) Solve (A)
$$z = px + qy + 2\sqrt{pq}$$
 (B) $p^2 + q^2 = 2$
OR

Q.5 (a) A string is stretched and fastened to two points *l* apart. Motion is started by 07 displacing the string in the form
$$y = \sin \frac{\pi x}{l}$$
 from which it is released at time t = 0. Show that the displacement of any point at distance x from one end at time t is given by $y(x,t) = a \sin \frac{\pi x}{l} \cos \frac{\pi ct}{l}$.

(b) (i) Find the Z- transform of ka^k , $k \ge 0$ 03 (ii) Solve deference equation $U_{k+1} + U_k = 1$ if $U_0 = 0$ 04

2

04

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC SEM-II Examination-Dec-2011

Subj	Subject code: X20001Date: 20/12Subject Name: Mathematics -IITatel and		
Instru	uction	.30 am -1.30 pm 1s: Attempt all questions.	Total marks: 70
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	(i) Prove that $\overline{)m+1} = m\overline{)m}$	02
		(ii) $L(e^{4t} t^2) = $ (iii) Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta = \frac{\pi}{\sqrt{2}}$	02 03
	(b)	(ii) Show that $\beta(m,n) = \beta(m+1, n) + \beta(m, n+1)$	02
		(ii) L(t sint) =	02 03
Q.2	(a)	(ii) Evaluate $\int_{0}^{\infty} e^{-3t} \sin 4t dt$ using Laplace transform.	03
		(ii) State convolution theorem. Find $L^{-1}\left(\frac{1}{(s-2)(s-1)}\right)$	04
	(b)	(i) Define unit step function. Find Laplace of unit step function.	p 03
		(ii) Using Laplace transform solve $y'' - y' - 6y = e^{-t}$, $y(0) = y'(0) = 0$ OR	04
	(b)	(i) Evaluate: $L(e^{5t}t^2 \sinh)$ (ii) Evaluate: $L\left(e^{3t}\int_{0}^{t}\frac{\sin t}{t}dt\right)$	03 04
Q.3	(a)	(i) Draw the graph of periodic function $f(x) = 1$ if $0 < and f(x) = -1$ if $-2 < x < 0$. Check whether $f(x)$ i or odd.	
		(ii) Find the Fourier series for $f(x) = x^2$, $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$.	04
	(b)	(i) Write Dirichlet's Conditions for Fourier series. Fourier series of tan $^{-1}$ (x) in interval (0, 2 π) does n exist. (true/false).	03
		(ii) Find Fourier integral representation of the function $f(x) = 1$ if $ x < 1$, $f(x) = 0$ if $ x > 1$.	on 04

Q.3	(a)	(i) If $f(x) = e^{ x }, -\pi < x < \pi$, $f(x + 2\pi) = f(x)$ then check $f(x)$ is even or odd also find Fourier coefficient b_n .	03
		(ii) Find the Fourier series for $f(x) = -k$ if $-\pi < x < 0$ and $f(x) = k$ if $0 < x < \pi$, $f(x + 2\pi) = f(x)$	04
	(b)	(i) Find F _c (e^{-x}). (ii) Expand $\pi x - x^2$ in a half range sine series in interval	03 04
Q.4	(a)	(0, π). (i) Solve (D ² – D – 12)y = e ^{2x} +5 (ii) Solve by method of variation of parameter	03 04
	(b)	$D^{2}y + y = \sec x$ (i) Solve ($D^{2} - 2D + 1$) y = sinx	03 04
Q.4	(a)	(ii) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2$ OR In L-C-R circuit the charge q on a plate of condenser is given by	07
Q. 1	(a)	$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E \sin wt$. The circuit is tuned to resonance so that w ² = 1/LC. If R ² < 4L/C and	07
	(b)	q = 0 = $\frac{dq}{dt}$ when t = 0. Find q(t) (i) Solve $(1+2x)^2 \frac{d^2y}{dx^2} - 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$	03
		(ii) If in a mass spring system mass = 4kg spring constant = 64, $f(t) = 8 \sin 4t$ and if there is no air resistance then find the subsequent motion of the weight.	04
Q.5	(a)	(i) Form partial differential equation from following equation. (A) $z = ax + bx + ab$ (B) $z = f(x^2 - y^2)$.	03
		(ii) (A) Solve $y^2zp + x^2zq = xy^2$	04

(ii) (A) Solve $y^2zp + x^2zq = xy^2$ (B) Solve (y - z)p + (x - y)q = z - x**0**4

(b) (i) (A) Solve
$$z = px + qy + p^2q^2$$
 (B) Solve $p^2 + q^2 = 2$.
(ii) Solve deference equation $U_{k+1} + U_k = 1$ if $U_0 = 0$
OR

Q.5(a) (i) Prove that Z-transform is linear.03(ii) Solve the following equation by method of separation04of variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0,y) = 8 e^{-3y}$.04(b) A tightly stretched string with fixed end points x = 0 and07

x = L is initially at rest in it equilibrium position. If it is set vibrating by giving to each its points a velocity $\lambda x(L-x)$, find the displacement of the string at any distance x from one end at any time t.

Date	•	1	1	/0	1

Q.1

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC 2ND Semester Examination – July- 2011

Subject code:X20001

Subject Name: MATHEMATICS-II

Date:11/07/2011

Seat No.: _____

Time: 10:30 am - 01:30 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Attempt the following.

Z .1		$\rho(m+1,n) = \rho(m+1) - \rho(m+1)$	2
		a) Prove that $\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n+1)}{n} = \frac{\beta(m,n)}{m+n}$.	3
		b) Express the integral $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$ in terms of Gamma functions.	3
		c) Define Beta function and compute $\beta(2.5,1.5)$.	
		d) Find : $L\{(t+2)^2 e^t\}$.	2 2
		e) Solve: $\frac{d^2 y}{dx^2} + a^2 y = 0.$	2
		f) Solve : $\frac{\partial^2 z}{\partial x^2} = xy$.	2
01	(a)	(1) Find the London Transformations of	4
Q.2	(a)	(1) Find the Laplace Transformations of $1 e^{t}$	4
		a) $\frac{1-e^{t}}{t}$	
		b) $te^{-2t} \sin 2t$	
		(2) Using Convolution theorem evaluate $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$.	3
	(b)	(1) Find the inverse Laplace Transforms of	4
		a) $\frac{3s}{s^2 + 2s - 8}$	
		b) $\log\left(\frac{s+a}{s+b}\right)$	
		(2) Evaluate : $\int_{0}^{\infty} t e^{-2t} \sin t dt$	3
		OR	
	(b)	(1) Using Laplace Transform, solve the differential equation	4
		$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^t \text{ with y } (0) = 2, \ y'(0) = -1.$	
		(2) Find: $L^{-1}\left\{\frac{5s+3}{(s-1)(s^2+2s+5)}\right\}$.	
		(2) Find: $L \left\{ \frac{1}{(s-1)(s^2+2s+5)} \right\}$.	3

Q.3 (a) Solve the following differential equations :

- (1) $\frac{d^3 y}{dx^3} + 2\frac{d^2 y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x.$ (2) $\frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4.$
- (b) Using method of variation of parameters, solve the differential 4 equation: $(D^2 + 4)y = \tan 2x$.
- (c) The differential equation for a circuit in which self-inductance and 4 capacitance neutralize each other is $L\frac{d^2i}{dt^2} + \frac{i}{C} = 0$. Find the current *i* as a function of *t* given that I is the maximum current and *i* = 0 when t = 0.

- Q.3 (a) Solve the following differential equations :
 - (1) $\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x} \sin 2x$ (2) $\frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x.$ Solve: $r^3 \frac{d^3 y}{dx} + 3r^2 \frac{d^2 y}{dx} + r \frac{dy}{dx} + 8y = 65\cos(\log x)$

(b) Solve:
$$x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log x).$$
 4

- (c) The deflection of a strut of length *l* with one end (x = 0) built-in and 4 the other supported and subjected to end thrust P satisfies the equation $\frac{d^2 y}{dx^2} + a^2 y = \frac{a^2 R}{P}(l-x)$. Prove that the deflection curve is $y = \frac{R}{P} \left(\frac{\sin ax}{a} - l\cos ax + l - x\right),$ where al = tan al.
- Q.4 (a) Find the Fourier series to represent $x x^2$ from $x = -\pi$ to $x = \pi$. (b) Find the Fourier series in the interval (-2,2) if $f(x) =\begin{cases} 0; -2 < x < 0 \\ 1:0 < x < 2 \end{cases}$ 5
 - (c) Find the Fourier cosine transform of $f(x) = e^{-ax}$; Hence evaluate $4 \int \frac{\cos \lambda x}{x^2 + a^2} dx$.
 - OR
- Q.4 (a) Find the Fourier series to represent the function f(x) given by 5 $f(x) = \begin{cases} x; for 0 \le x \le \pi \\ 2\pi - x; for \pi \le x \le 2\pi. \end{cases}$
 - (b) Find the Fourier series to represent πx in the interval $0 \le x \le 2$. 5
 - (c) Using the Fourier sine transform of $e^{-ax}(a > 0)$, show that 4

$$\int \frac{x \sin kx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ak} \, (k > 0).$$

Q.5 (a) Attempt the following:

(1) Solve:
$$x(y-z)p + y(z-x)q = z(x-y)$$
.

(2) Solve: $x^2 p^2 + y^2 q^2 = z^2$.

6

6

(b) Attempt the following : 4 (1) Form the partial differential equation from $z = f\left(\frac{xy}{z}\right)$. (2) Solve : pq+p+q=0. (c) Attempt the following : 4 (1) Find z-transform of $a^k \cos \alpha k; k \ge 0$. (2) Find the inverse z-transform of $\frac{z}{(z-2)(z-3)}$; |z| > 3. OR Q.5 (a) Attempt the following : 6 (1) Solve: (y+z)p - (z+x)q = x - y. (2) Solve: $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ Solve by the method of separation of variable $\frac{\partial u}{\partial r} = 2 \frac{\partial u}{\partial t} + u$, where 4 **(b)** $u(x,0) = 6e^{-3x}$. (c) Attempt the following : 4 (1) Find the z-transform of ka^k ; $k \ge 0$. (2) Find the inverse z-transform of $\frac{z^2}{(z-1)(z-\frac{1}{2})}; |z| > 1.$

Seat No.: ____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

P.D.D.C. Sem- II Remedial Examination Nov / Dec. 2010 Subject code: X20001 Subject Name: Mathematics-2 Date: 27 / 11 / 2010 Time: 10.30 am - 01.30 pm Instructions: Total Marks: 70 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 Do as directed. 14 (a) DefineBetafunction.Provethat $\beta(m,n) = 2\int_{0}^{\frac{1}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$ **(b)** Prove that $\beta(m, n+1) = \frac{n}{m+n}\beta(m, n)$. (c) Define Gamma Function. Prove that $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. (d) Prove that $\int_{-\infty}^{\overline{2}} \sqrt{\sin\theta} d\theta \times \int_{-\infty}^{\overline{2}} \frac{d\theta}{\sqrt{\sin\theta}} = \pi$. **(e)** Show that $\int_{-\infty}^{\infty} x^2 e^{-x^4} dx = \frac{1}{4} \left| \frac{3}{4} \right|.$ (f) Prove that $\int_{0}^{1} \frac{dx}{\sqrt{-\log x}} = \sqrt{\pi}$. (g) Prove that $\frac{1}{2} = \sqrt{\pi}$. Q.2 (a) Find the Laplace transform of the following: (any two) 04 (i) $e^{3t} \sin^2 t$ (ii) $t \cos 2t$ (iii) $\frac{\cos at - \cos bt}{\cos at - \cos bt}$ (b) State convolution theorem. Using it find inverse Laplace transform of 03 $\frac{1}{(s+2)(s+3)}$ (c) (I)Find the Laplace transform of the following: (any two) 03 (i) $\cos 2t \sin 2t$ (ii) $te^{-t} \cos 2t$ (iii) $\frac{1-e^{t}}{t}$ (II)Find the inverse Laplace transforms of 04 (i) $\frac{s+2}{s^2-4s+13}$ (ii) $\log\left(\frac{s+1}{s-1}\right)$. OR (c) (I)Find the inverse Laplace transforms of 04 (i) $\tan^{-1}\left(\frac{2}{s^2}\right)$ (ii) $\frac{2s^2-6s+5}{(s-1)(s-2)(s-3)}$. (II)By using method of Laplace transform solve the initial value 03 problem $y'' + 4y' + 3y = e^{-t}$, y(0) = y'(0) = 1. Q.3 (a) Solve: 05 (i) $(D^2 + 5D + 6)v = e^x$

Page 15 of 16

¹

(ii) $(D^2 - 5D + 6)y = \sin 3x$.

(b) Using the method of variation of parameter solve the differential 05 equation $y'' + y = \sec x$.

(c) Solve
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
. 04

Q.3 (a) Solve: (i) $(D^2 + D)y = x^2 + 2x + 4$ (ii) $(D^2 - 2D + 4)y = e^x \cos x$. (05)

(b) Solve
$$(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin(\log(1+x))$$
. **05**

(c) Show that the frequency of free vibration in a closed electrical 04
Circuit with inductance L and capacity C in series is
$$\frac{30}{\pi\sqrt{LC}}$$
 per minute.

Q.4 (a) Find the Fourier series of the function
$$f(x) = x^2, -\pi < x < \pi$$
.
(b) Find the Fourier series expansion for $f(x)$, if 05

$$f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ \{x, 0 < x < \pi \end{cases}$$

(c) Find the Fourier transform of $f(x) = \{1, |x| < 1$ $\{0, |x| > 1$ 04

Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$

OR

Q.4 (a) Obtain the Fourier series for $f(x)=e^{-x}$ in the interval $0 < x < 2\pi$. (b) Express f(x) = x as a half range sine series in 0 < x < 2. (c) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. Q.5 (a) Form the partial differential equation from: (i) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(ii)
$$z = f(x^2 - y^2)$$
.
Solve: 05

(b) Solve:
(i)
$$(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} = ly - mx$$

(ii) $((x^2 - y^2 - z^2)p + 2xyq = 2xz$.

(c) (i)State and prove linearity property of Z transform.
 (ii)state and prove Damping rule of Z transform.

Solve by the method of separation of variable

$$\frac{\partial^2 z}{\partial r^2} - 2 \frac{\partial z}{\partial r} + \frac{\partial z}{\partial u} = 0$$
05

(b) Solve (i)
$$\sqrt{p} + \sqrt{q} = 1$$
 05

(ii)
$$p^2 + q^2 = x + y$$
.
e Z transform . 04

(c) Define Z transform . Solve (i) $z(a^n)$ (ii) $z(n^p)$.

Q.5 (a)